282 research outputs found

    Infrared thermochromic antenna composite for self-adaptive thermoregulation

    Full text link
    Self-adaptive thermoregulation, the mechanism living organisms use to balance their temperature, holds great promise for decarbonizing cooling and heating processes. The functionality can be effectively emulated by engineering the thermal emissivity of materials to adapt to background temperature variations. Yet, solutions that marry large emissivity switching (Δϔ{\Delta}\epsilon) with scalability, cost-effectiveness and design freedom are still lacking. Here, we fill this gap by introducing infrared dipole antennas made of tunable thermochromic materials. We demonstrate that non-spherical antennas (rods, stars and flakes) made of vanadium-dioxide can exhibit a massive (~200-fold) increase in their absorption cross-section as temperature rises. Embedding these antennas in polymer films, or simply spraying them directly, creates free-form thermoregulation composites, featuring an outstanding Δϔ∌0.6{\Delta}\epsilon\sim0.6 in spectral ranges that can be tuned at will. Our research paves the way for versatile self-adaptive heat management solutions (coatings, fibers, membranes and films) that could find application in radiative-cooling, heat-sensing, thermal-camouflage, and other

    Correlative light and electron microscopy suggests that mutant huntingtin dysregulates the endolysosomal pathway in presymptomatic Huntington’s disease

    Get PDF
    Huntington’s disease (HD) is a late onset, inherited neurodegenerative disorder for which early pathogenic events remain poorly understood. Here we show that mutant exon 1 HTT proteins are recruited to a subset of cytoplasmic aggregates in the cell bodies of neurons in brain sections from presymptomatic HD, but not wild-type, mice. This occurred in a disease stage and polyglutamine-length dependent manner. We successfully adapted a high-resolution correlative light and electron microscopy methodology, originally developed for mammalian and yeast cells, to allow us to correlate light microscopy and electron microscopy images on the same brain section within an accuracy of 100 nm. Using this approach, we identified these recruitment sites as single membrane bound, vesicle-rich endolysosomal organelles, specifically as (1) multivesicular bodies (MVBs), or amphisomes and (2) autolysosomes or residual bodies. The organelles were often found in close-proximity to phagophore-like structures. Immunogold labeling localized mutant HTT to non-fibrillar, electron lucent structures within the lumen of these organelles. In presymptomatic HD, the recruitment organelles were predominantly MVBs/amphisomes, whereas in late-stage HD, there were more autolysosomes or residual bodies. Electron tomograms indicated the fusion of small vesicles with the vacuole within the lumen, suggesting that MVBs develop into residual bodies. We found that markers of MVB-related exocytosis were depleted in presymptomatic mice and throughout the disease course. This suggests that endolysosomal homeostasis has moved away from exocytosis toward lysosome fusion and degradation, in response to the need to clear the chronically aggregating mutant HTT protein, and that this occurs at an early stage in HD pathogenesis

    Fabrication of robust superhydrophobic surfaces via aerosol-assisted CVD and thermo-triggered healing of superhydrophobicity by recovery of roughness structures

    Get PDF
    Artificial self-healing superhydrophobic surfaces have become a new research hotspot because of their recoverable non-wetting performance and practical perspective. In this paper, a superhydrophobic surface was fabricated by aerosol-assisted layer-by-layer chemical vapor deposition (AA-LbL-CVD) of epoxy resins and PDMS polymer films. The obtained samples still showed superhydrophobicity even after long-term exposure to different pH solutions and UV light irradiation as well as great mechanical stability against sandpaper abrasion and double-sided tape peeling. Importantly, due to the shape memory effect of the polymer films, the as-prepared samples could recover the previously crushed micro–nano structures upon heat treatment to make the surface superhydrophobic, showing thermo-triggered healing of superhydrophobicity

    Flexible and Self-Powered Photodetector Arrays Based on All-Inorganic CsPbBr3 Quantum Dots

    Get PDF
    Flexible devices are garnering substantial interest owing to their potential for wearable and portable applications. Here, flexible and self‐powered photodetector arrays based on all‐inorganic perovskite quantum dots (QDs) are reported. CsBr/KBr‐mediated CsPbBr3 QDs possess improved surface morphology and crystallinity with reduced defect densities, in comparison with the pristine ones. Systematic material characterizations reveal enhanced carrier transport, photoluminescence efficiency, and carrier lifetime of the CsBr/KBr‐mediated CsPbBr3 QDs. Flexible photodetector arrays fabricated with an optimum CsBr/KBr treatment demonstrate a high open‐circuit voltage of 1.3 V, responsivity of 10.1 A W−1, specific detectivity of 9.35 × 1013 Jones, and on/off ratio up to ≈104. Particularly, such performance is achieved under the self‐powered operation mode. Furthermore, outstanding flexibility and electrical stability with negligible degradation after 1600 bending cycles (up to 60°) are demonstrated. More importantly, the flexible detector arrays exhibit uniform photoresponse distribution, which is of much significance for practical imaging systems, and thus promotes the practical deployment of perovskite products

    Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the R6/2 Mouse Model of HD

    Get PDF
    Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6/2 mouse model of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model, the association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood. In an attempt to link these factors, we have performed longitudinal assessments of behavior (rotarod, open field, passive avoidance) and of regional brain abnormalities determined through magnetic resonance imaging (MRI) (whole brain, striatum, cortex, hippocampus, corpus callosum), as well as an end-stage histological assessment. Detailed correlative analyses of these three measures were then performed. We found a gender-dependent emergence of motor impairments that was associated with an age-related loss of regional brain volumes. MRI measurements further indicated that there was no striatal atrophy, but rather a lack of striatal growth beyond 8 weeks of age. T2 relaxivity further indicated tissue-level changes within brain regions. Despite these dramatic motor and neuroanatomical abnormalities, R6/2 mice did not exhibit neuronal loss in the striatum or motor cortex, although there was a significant increase in neuronal density due to tissue atrophy. The deposition of the mutant HTT (mHTT) protein, the hallmark of HD molecular pathology, was widely distributed throughout the brain. End-stage histopathological assessments were not found to be as robustly correlated with the longitudinal measures of brain atrophy or motor impairments. In conclusion, modeling pre-manifest and early progression of the disease in more slowly progressing animal models will be key to establishing which changes are causally related. © 2013 Rattray et al

    Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO2

    Get PDF
    Transparent conducting oxides (TCOs) are ubiquitous in modern consumer electronics. SnO2 is an earth abundant, cheaper alternative to In2O3 as a TCO. However, its performance in terms of mobilities and conductivities lags behind that of In2O3. On the basis of the recent discovery of mobility and conductivity enhancements in In2O3 from resonant dopants, we use a combination of state-of-the-art hybrid density functional theory calculations, high resolution photoelectron spectroscopy, and semiconductor statistics modeling to understand what is the optimal dopant to maximize performance of SnO2-based TCOs. We demonstrate that Ta is the optimal dopant for high performance SnO2, as it is a resonant dopant which is readily incorporated into SnO2 with the Ta 5d states sitting ∌1.4 eV above the conduction band minimum. Experimentally, the band edge electron effective mass of Ta doped SnO2 was shown to be 0.23m0, compared to 0.29m0 seen with conventional Sb doping, explaining its ability to yield higher mobilities and conductivities

    Aerosol-assisted chemical vapour deposition of transparent superhydrophobic film by using mixed functional alkoxysilanes

    Get PDF
    A method for the preparation of transparent superhydrophobic silica coatings on glass substrates via aerosol-assisted chemical vapour deposition (AACVD) is described. A multi-layer process to produce dual scale silica nanoparticles films, by using different functional alkoxysilanes was investigated. A first layer of 3-methacryloxypropyltrimethoxysilane (MPS) and a second layer of tetraethylorthosilicate (TEOS) were deposited at different temperatures to generate micro and nano particles of silica. Finally, a layer of perfluorooctyltriethoxysilane was deposited on top of the two layers to achieve superhydrophobicity. The transparent superhydrophobic film showed transparency of 90% in the visible light region with a static water contact angle of 165° and a sliding angle lower than 1°. Various durability tests were performed on the transparent superhydrophobic film, showing a constant water repellency after corrosion and organic solvents tests, strong resistance under UV light, and thermal stability up to 400 °C. Sandpaper mechanical robustness durability test showed superhydrophobicity for up to 5 rubbing cycles. In this study, a novel strategy to achieve highly transparent superhydrophobic glass surfaces using AACVD of alkoxysilanes, to produce surfaces with excellent durability is described. This shows great potential to obtain silica superhydrophobic films for large-scale applications

    Robust Protection of III-V Nanowires in Water Splitting by a Thin Compact TiO2 Layer.

    Get PDF
    Narrow-band-gap III-V semiconductor nanowires (NWs) with a suitable band structure and strong light-trapping ability are ideal for high-efficiency low-cost solar water-splitting systems. However, due to their nanoscale dimension, they suffer more severe corrosion by the electrolyte solution than the thin-film counterparts. Thus, short-term durability is the major obstacle for using these NWs for practical water-splitting applications. Here, we demonstrated for the first time that a thin layer (∌7 nm thick) of compact TiO2 deposited by atomic layer deposition can provide robust protection to III-V NWs. The protected GaAs NWs maintain 91.4% of its photoluminescence intensity after 14 months of storage in ambient atmosphere, which suggests the TiO2 layer is pinhole-free. Working as a photocathode for water splitting, they exhibited a 45% larger photocurrent density compared with unprotected counterparts and a high Faraday efficiency of 91% and can also maintain a record-long highly stable performance among narrow-band-gap III-V NW photoelectrodes; after 67 h photoelectrochemical stability test reaction in a strong acid electrolyte solution (pH = 1), they show no apparent indication of corrosion, which is in stark contrast to the unprotected NWs that fully failed after 35 h. These findings provide an effective way to enhance both stability and performance of III-V NW-based photoelectrodes, which are highly important for practical applications in solar-energy-based water-splitting systems

    Alternative processing of human HTT mRNA with implications for Huntington's disease therapeutics

    Get PDF
    Huntington disease is caused by a CAG repeat expansion in exon 1 of the huntingtin gene (HTT) that is translated into a polyglutamine stretch in the huntingtin protein (HTT). We previously showed that HTT mRNA carrying an expanded CAG repeat was incompletely spliced to generate HTT1a, an exon 1 only transcript, which was translated to produce the highly aggregation-prone and pathogenic exon 1 HTT protein. This occurred in all knock-in mouse models of Huntington's disease and could be detected in patient cell lines and post-mortem brains. To extend these findings to a model system expressing human HTT, we took advantage of YAC128 mice that are transgenic for a yeast artificial chromosome carrying human HTT with an expanded CAG repeat. We discovered that the HTT1a transcript could be detected throughout the brains of YAC128 mice. We implemented RNAscope to visualise HTT transcripts at the single molecule level and found that full-length HTT and HTT1a were retained together in large nuclear RNA clusters, as well as being present as single transcripts in the cytoplasm. Homogeneous time-resolved fluorescence analysis demonstrated that the HTT1a transcript had been translated to produce the exon 1 HTT protein. The levels of exon 1 HTT in YAC128 mice, correlated with HTT aggregation, supportive of the hypothesis that exon 1 HTT initiates the aggregation process. Huntingtin-lowering strategies are a major focus of therapeutic development for Huntington's disease. These approaches often target full-length HTT alone and would not be expected to reduce pathogenic exon 1 HTT levels. We have established YAC128 mouse embryonic fibroblast lines and shown that, together with our QuantiGene multiplex assay, these provide an effective screening tool for agents that target HTT transcripts. The effects of current targeting strategies on nuclear RNA clusters are unknown, structures that may have a pathogenic role, or alternatively could be protective by retaining HTT1a in the nucleus and preventing it from being translated. In light of recently halted antisense oligonucleotide trials, it is vital that agents targeting HTT1a are developed, and that the effects of HTT-lowering strategies on the subcellular levels of all HTT transcripts and their various HTT protein isoforms are understood
    • 

    corecore